Neural Implementation of Probabilistic Models of Cognition
نویسندگان
چکیده
Bayesian models of cognition hypothesize that human brains make sense of data by representing probability distributions and applying Bayes’ rule to find the best explanation for available data. Understanding the neural mechanisms underlying probabilistic models remains important because Bayesian models provide a computational framework, rather than specifying mechanistic processes. Here, we propose a deterministic neural-network model which estimates and represents probability distributions from observable events — a phenomenon related to the concept of probability matching. Our model learns to represent probabilities without receiving any representation of them from the external world, but rather by experiencing the occurrence patterns of individual events. Our neural implementation of probability matching is paired with a neural module applying Bayes’ rule, forming a comprehensive neural scheme to simulate human Bayesian learning and inference. Our model also provides novel explanations of base-rate neglect, a notable deviation from Bayes.
منابع مشابه
A Comparative Study of the Neural Network, Fuzzy Logic, and Nero-fuzzy Systems in Seismic Reservoir Characterization: An Example from Arab (Surmeh) Reservoir as an Iranian Gas Field, Persian Gulf Basin
Intelligent reservoir characterization using seismic attributes and hydraulic flow units has a vital role in the description of oil and gas traps. The predicted model allows an accurate understanding of the reservoir quality, especially at the un-cored well location. This study was conducted in two major steps. In the first step, the survey compared different intelligent techniques to discover ...
متن کاملBridging Levels of Analysis for Probabilistic Models of Cognition
Probabilistic models of cognition characterize the abstract computational problems underlying inductive inferences and identify their ideal solutions. This approach differs from traditional methods of investigating human cognition, which focus on identifying the cognitive or neural processes that underlie behavior and therefore concern alternative levels of analysis. To evaluate the theoretical...
متن کاملDesigning of a New Transformer Ground Differential Relay Based on Probabilistic Neural Network
Low- impedance transformer ground differential relay is a part of power transformer protection system that is employed for detecting the internal earth faults. This is a fast and sensitive relay, but during some external faults and inrush current conditions, may be exposed to maloperation due to current transformer (CT) saturation. In this paper, a new intelligent transformer ground differentia...
متن کاملPrediction of Gain in LD-CELP Using Hybrid Genetic/PSO-Neural Models
In this paper, the gain in LD-CELP speech coding algorithm is predicted using three neural models, that are equipped by genetic and particle swarm optimization (PSO) algorithms to optimize the structure and parameters of neural networks. Elman, multi-layer perceptron (MLP) and fuzzy ARTMAP are the candidate neural models. The optimized number of nodes in the first and second hidden layers of El...
متن کاملSpecial Issue: Probabilistic models of cognition Probabilistic models of language processing and acquisition
Probabilistic methods are providing new explanatory approaches to fundamental cognitive science questions of howhumans structure, process and acquire language. This review examines probabilistic models defined over traditional symbolic structures. Language comprehension and production involve probabilistic inference in such models; and acquisition involves choosing the best model, given innate ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cognitive Systems Research
دوره 40 شماره
صفحات -
تاریخ انتشار 2016